Al in Parenting: The GPT-
Powered Parenting Assistant

#ParentingAssistant #GPT #AlPoweredParenting #AlinChildcare #SmartParenting
#ParentingTechnology #Childcarelnnovation #ParentingSupport #AlinParenting
#NextGenParenting #OpenAlParenting #ParentingRevolution #DigitalParenting
#AlForBetterParenting #ParentingMadeEasier #Multiligualassistant

Author: VANI KRISHNAN
Github: https://github.com/VANIRAMAKRISHNAN/parentingassistant.qgit

Problem Description:

Parenting, particularly for first-time parents, can be a daunting task. Parents often find
themselves overwhelmed by the myriad of responsibilities and decisions that they have to make
on behalf of their newborn. The task becomes even more complex when parents have to figure
out the reasons behind their child's behavior, like frequent crying, or tracking their child's
growth and development. Adding to the challenge, some parents might not be fluent in English,
the dominant language in most parenting resources. This brings us to the need for a
multilingual parenting assistant that can provide on-demand, accurate and helpful
information, especially during off-hours.

Inspiration:

The primary inspiration for this project was the mothers of newborns who require immediate
assistance during off-hours. They are often left clueless when their baby starts crying at odd
hours or when they need to track the child's progress but don't have the means to do so
efficiently. This app, in regional languages, can provide them with the assistance they need.

Solution:

Our solution is a multilingual 'Parenting Assistant' web app powered by GPT and Translator API.
This app will be designed to understand questions about parenting in any regional language
and provide responses in the same language. These responses will be curated by leveraging the
power of Al - particularly OpenAl's GPT model - which is known for generating human-like text
based on the input provided.

https://github.com/VANIRAMAKRISHNAN/parentingassistant.git

Architecture:

Parenting Assistant

Azure Kubernetes Services Azure Container Registry

a

Port 5000 ‘
Front end QIR Back end

on— 1 Question from Ul passed to Flask

Post Question in Python backend

5
English/Hindi/ I l 2 Question in regional language to be
MaIgyaIam/TeIL’J‘gu/ ” 2 sent to Azure Translator API for
Tamll/Ka_nnqda on r% 3 conversion to English
application .4
a ’ English translated prompt to be sent
e to Open Al GPT API

Translator API .
4 OpenAl GPT Response from Open Al GPT in

4 English shared to Translator API for
regional language conversion

Regional language response passed
back to Front end

Pre-requisites:

1. We'll set up Translator API for the language conversion. Here, we will be using the Microsoft
Azure Translator Text API.

To use the Microsoft Azure Translator Text AP, you'll need to set up an Azure account, create a
new resource for the Translator Text AP, and grab the API key. Create Translator APl in Azure as
shown below:

CHREN (S @ portal.azure.com/#create/Microsoft.CognitiveServicesTextTranslation

= Microsoft Azure [# search resources, senvices, and docs (G+1)

Home > Cognitive Services | Translator >

Create Translator

Basics Network Identity Tags Review + create

Easlly integrate real-time text translation capabilities into your application’s websites, tools, or any solution requiring
multi-language support such as website lacakzation, e-commerce, customer support, messaging apphcations, internal
communication, and more.

Project Details

Subscription * () [vsual Studio Enterprise Subscription ~]

\— Resource group * @ [parenting_assstant v |
Create new

Instance Details

@ Please choase the Global region unless your business or application requires a specific region. Applications that do nat
offer a region selection use the Global region.

Region* © [East US v |
Name ™ O [parentingassistant -]
Pricing ter ™ © [Free Fo (Up to 2 chavacters transiated per month) ~]

View full pricing details

Review + create | [< Previous | [Next: Network >

Capture the Keys, region, endpoint of the Translator API

& e @ portal.azure.com/#view/HubsExtension/DeploymentDetailsBlade/~/overview/id/%2Fsubscriptions%2F356351c3-9605-42c9-b7a1-122a7..

= Microsoft Azure [# search resources, senvices, an

Home >

+ Microsoft.CognitiveServicesTextTranslation-20230528083316 | Overview =

Deployment

[Delete © Cancel f" Redeploy & Download () Refresh
view

lation-20230528083316 Start time 5/28/2023, B3451 AM
Correlation ID : fcBa352a-a308-4b56-9b60-3606449¢dcdb

> Deployment details

~ Next steps

Go to resource

Give feedback

A7 Tell us about your experience with deployment

2. Ensure that you have your OpenAl APl key at hand, which is necessary for making API
requests. Generate OpenAl - APl key from OpenAl website.

Implementation Detail:

As part of this implementation, first, lets setup in Azure VM (Linux - Ubuntu). Post this, we can
containerise and deploy to AKS

Step 1: Azure VM setup:

Create Resource Group

Create a Azure VM (Linux Ubuntu VM)

Open port 5000 in network to allow traffic

Install Python libraries by executing the below commands in sequence:
sudo apt update
sudo apt install python3-pip
pip3 install Flask openai

Pwbn =

Step 2: Setting Up the Backend

We will start with setting up the Flask backend, Python being the server-side language.
We'll create a POST APl endpoint '/ask' to accept the user's parenting question in regional
language, translate it to English, feed it to GPT, and then translate the response back to the
original language.

Create a new file named ‘app.py' with below code snippet:

import os

import openai

import requests

import uuid

import json

from flask import Flask, render_template, request, jsonify, send_file

app = Flask(__name__)
openai.api_key = "provide openai api key"

Set up Azure translator

subscription_key = 'provide translator key'

endpoint = 'https://api.cognitive.microsofttranslator.com/'
location = 'provide region'

def translate(input_text, target_language):
path = '/translate’
constructed_url = endpoint + path

params = {
‘api-version': '3.0',
from': 'en’,
'to": [target_language]
}

headers ={
'Ocp-Apim-Subscription-Key': subscription_key,
'‘Ocp-Apim-Subscription-Region': location,
'‘Content-type': 'application/json’,
'X-ClientTraceld': str(uuid.uuid4())

}

body = [{'text": input_text}]

request = requests.post(constructed_url, params=params, headers=headers, json=body)
response = request.json()
return response[0]['translations'][0]['text']

@app.route('/")
def index():
return render_template('index.html’)

@app.route('/ask’, methods=['POST'])

def ask():
data = request.get_json() # Use get_json() since we're sending JSSON
question = data['question’]
language = datal'language']

Translate question to English
question_in_english = translate(question, 'en')

response = openai.Completion.create(
engine="text-davinci-002",
prompt=f"Parenting question: {question_in_english\nAnswer:",
max_tokens=150,
n=1,
stop=None,
temperature=0.5,

answer = response.choices[0].text.strip()

Translate answer to the chosen language
answer_in_chosen_language = translate(answer, language)

return jsonify({'answer': answer_in_chosen_language})
if _name__=='_main__":
app.run(debug=True, host="0.0.0.0")

Step 3: Setting Up the Frontend
We will create a basic HTML page (index.html) under a folder “templates” with a form to input
the user's question and a space to display the assistant's response. CSS will be used for styling,
and JavaScript to make the API call.
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Parenting Assistant - powered by GPT</title>
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap"
rel="stylesheet">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<style>
body {
font-family: 'Roboto’, sans-serif;
background-color: #f06292;
color: white;
display: flex;
align-items: center;
justify-content: center;
height: 100vh;
margin: 0;

padding: 0;

!

#tcontainer {
text-align: center;
padding: 20px;
background: rgba(0,0,0,0.7);
border-radius: 10px;

!

h1{
margin-bottom: 20px;

!

#chatbox {
height: 300px;
width: 100%;
overflow-y: scroll;
margin-bottom: 20px;
border: 1px solid white;
padding: 10px;
background: white;
color: black;

!

input, button, select {
padding: 10px;
font-size: 18px;

!
input {
width: 60%;
!
select{
width: 20%;
!
button {
width: 18%;
margin-left: 2%;
background: #ff4081;
color: black;
!
</style>
</head>
<body>

<div id="container">

<h1>Parenting Assistant - know about your child</h1>

<p>3Y- g & JgaR ¥fTsa & oy gafdd</p>

<div id="chatbox">

</div>

<form id="chat-form">

<select id="language" required>
<option value="" disabled selected>Select your language</option>

<option value="en">English</option>
<option value="hi">Hindi</option>
<option value="ta">Tamil</option>
<option value="ml">Malayalam</option>
<option value="te">Telugu</option>
<option value="kn">Kannada</option>
</select>
<input type="text" id="question" placeholder="Type your question here..." required>
<button type="submit">Ask</button>
</form>
</div>
<script>
$(document).ready(function() {
$('#chat-form").on('submit’, function(e) {
e.preventDefault(); // Prevent the form from being submitted normally
let question = $('#question').val(); // Get the value of the question input

// Send a POST request to the server
$.ajax({
url: '/ask’,
method: 'POST',
contentType: 'application/json’,
data: JSON.stringify({
question: question,
language: $('#language').val() // Include the selected language
1,
dataType: 'json’,
success: function(data) {
let answer = data.answer; // Get the answer from the response

// Add the question and answer to the chatbox
$('#chatbox').append('<p>You: ' + question + '</p>");
$('#chatbox').append('<p>Al: ' + answer + '</p>');

// Clear the question input
$('#question').val(");

1

error: function() {
// This function will be called if the request fails
alert('An error occurred. Please try again.');

bk

</script>
</body>
</html>

Step 4: Execute the program app.py like below:

python3 app.py

Application will be accessible as shown below:

User can select the language of their choice and ask questions in regional language as shown
below. Respective responses from GPT will be reverted back.

Translator APl enables the language conversion from regional to English and vice versa

¢ C A NotSecure | 20.83.165.88:5000 h % @ % = O @ (update :

Parenting Assistant - know about your child

39 F=) & dav Hias & fag wwfda

You: What is the normal weight of a 3 year old girl based in India

Al: There is no one "normal" weight for a 3 year old girl in India, as children can vary widely in size and weight depending on their individual genetics and growth patterns. However, according to
the World Health Organization's growth standards, the average weight for a 3 year old girl in India is about 13.5 kg.

You: ag)eqd &:)60mla aISH0 $:)S)ma8 Mulalo $26mMYaM). S0 MHOIWIREMBIEEMI?

Al: 0 6206500107 80} WeNOTNSS OO, &ICEMo BIGOI d)FIWYe AUIM MBI, ER@IMITE QUM MV QOGO @B AUCDJEBRUE ENEIM)0. a0, MEBRS)OS)] BREM (OO eSS
0F @)5)&e880008 ©)S)MM QOB BWINEMEIM, (FO®EIR)e ERSIMNIM BREAIN} (MR MEElens®Im MaERE)Ns ¢¥lw)erdNallerLM@I] 21B2] 21T B)LIQICIEN.

You: a° Q¥ wrer AN Fwey SPTaw. VA FerBeaar?

Al: SQen wrer XS ey SKPTmTEDh APERE0 . &

Type your question here...

Services used for this blog:

<« C @ portal.azure. iew/ i View o AQ f & @ » 0O
= Microsoft Arure ocs G0 8 Do o @
Home >

Recent =

O Reben @ Coor 3 Fesdbock | G Assigntags

Type Loeation

EastUs

Southeast Asia

EED

EsstUs

Southeast Asia D Group-SER

Southeast Asia NetworkWatcherRG

Using the requirements.txt, Dockerfile and Kubernetes manifest files and ACR, we have
deployed the application to AKS for scalability as well.

requirements.txt
flask

openai

requests

Dockerfile

FROM python:3.7

WORKDIR /app

COPY requirements.txt /app

RUN pip install -r requirements.txt
COPY . /app

EXPOSE 5000

CMD ["python", "app.py"]

Kubernetes manifest files:

Deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: parenting-assistant
spec:
replicas: 3
selector:
matchLabels:
app: parenting-assistant
template:
metadata:

labels:
app: parenting-assistant

spec:

containers:

- name: parenting-assistant
image: <your-dockerhub-username>/parenting-assistant:latest
ports:

- containerPort: 5000

Service.yaml

apiVersion: v1
kind: Service

metadata:
name: parenting-assistant-service
spec:
selector:
app: parenting-assistant
ports:
- protocol: TCP
port: 80
targetPort: 5000
type: LoadBalancer

Challenges Faced:
We encountered a few challenges during the implementation process.

1. Language conversion: |dentifying the solution for language conversion and
integrating the same for supporting regional language was a challenge. The
efficient translation of questions and answers between regional language and
English was a significant challenge, given the complexity of the languages.

2. Understanding parenting queries: Providing relevant answers to parenting
questions was another hurdle.

3. Ensuring the reliability of the answers: As this application is about parenting, it
is crucial to ensure that the information provided is accurate and safe. Thus, there
was a challenge to make sure the Al does not provide misleading information. To
combat this, thorough testing and monitoring of the model's responses were

conducted.
Benefits:
1. 24/7 Assistance: The parenting assistant can provide constant help to parents,

particularly helpful during off-hours when immediate assistance is not available.

2. Multi-language Support: With the Translator API, the app can cater to non-
English speaking parents and can be easily expanded to other languages in the
future.

3. Personalized Responses: With the power of GPT, the app provides personalized
responses based on the question context, making it more relatable and useful.

Conclusion:

The "Parenting Assistant" web application brings the power of Al and multilingual support to
parenting, providing a valuable resource for new parents. Despite the challenges encountered
during the development, the final product offers a readily available and easily accessible source
of parenting assistance. The blend of Al and human touch in this application creates a valuable
and unique resource in the world of parenting.

